
Why Databases?

Mahmoud El-Haj

Why study database?
• Job market requires database admins (Oracle).
• Databases are everywhere (i.e. a lot of job opportunities)
• Who and where:

– Google, Facebook, Amazon, …
– Clinics, supermarkets, payroll systems
– Universities and companies students and employees records.
– Stock Market and financial sectors.
– Government
– Science (e.g. data)

• What do we store in databases?
– Databases for search engines (google has 2.5 million servers)
– Database of emails (gmail, outlook, ...etc)
– Database of publications (google scholar)

• Issues:
– Privacy and protection against cyberattacks (cybersecurity).

• Efficiency:
– How to quickly make transactions (e.g. Bank ATMs)
– Find what you are looking for on Amazon and Ebay

Where would a database be useful?

Example: hotels

What do I need to know?

• How to create databases
• How to efficiently query them
• How to keep them secure and up to date

THE EMPLOYEE RECORD SYSTEM
Enter...

...because every Database course must have one

EXAMPLE: HOW WOULD I CREATE A
DATABASE FROM SCRATCH?

Simple Employee Record System
Name Age Gender

Stark 32 M

Employee {
char Name[10];
int Age;
char Gender;

}

S T A R K Ø Ø Ø Ø Ø

32 0 0 0

M

Assumed layout

Int could be of 4 bytes
(8 bits each, simply one unsigned char of size 0-255)
256*256*256*256 = 4294967295
If signed (eg MS Access) (-127 to 127) we get -2147483647 to
2147483647

Simple Employee Record System
Name Age Gender

Stark 32 M

Employee {
char Name[10];
int Age;
char Gender;

}

S T A R K Ø Ø Ø Ø Ø

32 0 0 0

M

S T A R K Ø Ø Ø Ø Ø 32 0 0 0 M

Linear file/ memory

Assumed layout

Simple Employee Record System
Name Age Gender

Stark 32 M

Lannister 28 F

Employee {
char Name[10];
int Age;
char Gender;

}

S T A R K Ø Ø Ø Ø Ø

32 0 0 0

M

S T A R K Ø Ø Ø Ø Ø 32 0 0 0 M L A N

L A N N I S T E R Ø

28 0 0 0

F

Single record (15 bytes)

Hint: 15 + 4 + 1 = 15 bytes

Simple Employee Record System

• We have a Relational file
– Number of records
– Each record has a defined set of related attributes

Employee

Name Age Gender

T Y R E L L Ø Ø Ø Ø 79 0 0 0 M

T U L L Y Ø Ø Ø Ø Ø 24 0 0 0 F

S T A R K Ø Ø Ø Ø Ø 32 0 0 0 M

L A N N I S T E R Ø 28 0 0 0 F

Single record (15 bytes)

Using the Relational File

• What would happen if someone comes with:

1. A name having more than 10 characters (e.g.
Hetherspoon)?
• We’ll worry about this one later!

2. An idea for a data processing task…
a) Using the data as it stands?
b) Needing additional employee data not currently

stored (e.g. marital status)?

Using the Relational File, problem 2a:

... a data processing task using the
data as it stands

Accessing the Relational File

• Programmer must
– Understand format of employee file, and…

– Either
a) Obtain file access routines (sequence of code) from

existing program
– Understand what code does
– Include code in new design

b) Write own routines that correctly handle file access

Accessing the Relational File

• Remember each record is of known length, so

– We can easily calculate the position of each
employee’s record in the file

S T A R K Ø Ø Ø Ø Ø 32 0 0 0 M L A N

Single record (15 bytes)

Payroll Number: n Payroll Number: n + 1

Accessing the Relational File

• Using existing code

• Writing new code

Employee e = getEmployee (payrollNumber);

const int RECORD_SIZE = sizeOf (Employee);

Employee getEmployee (int payrollNumber) {
DBfile.moveto (payrollNumber * RECORD_SIZE);
return (Employee) DBfile.readBytes (RECORD_SIZE);

}

Pseudo code, convert to your preferred language

sizeOf (Employee)

 15 Bytes

Accessing the Relational File

• The more application(s) that are required, the
more times this will be done

• More than likely, file access routines will
(eventually) be abstracted out

• Unfortunately, by this time multiple versions
will likely exist in/ for each application

Using the Relational File, problem 2b:

... a data processing task needing
additional employee data not
currently stored

Adding Employee Marital Status

• Alter main file to include new information

– This means the format of the file – as known to
every other application – will change (records of
fixed size of 15 bytes)

– All existing applications will now fail!

Adding Employee Marital Status
Employee

Name Age G S

T Y R E L L Ø Ø Ø Ø 79 0 0 0 M M

T U L L Y Ø Ø Ø Ø Ø 24 0 0 0 F S

S T A R K Ø Ø Ø Ø Ø 32 0 0 0 M S

L A N N I S T E R Ø 28 0 0 0 F D

Single record (16 bytes)

Adding Employee Marital Status

Employee (as read by old code)

Name Age G

T Y R E L L Ø Ø Ø Ø 79 0 0 0 M

M T U L L Y Ø Ø Ø Ø Ø 24 0 0 0

F S S T A R K Ø Ø Ø Ø Ø 32 0 0

0 M S L A N N I S T E R Ø 28 0

Single record (expect 15 bytes)

Employee

Name Age G S

T Y R E L L Ø Ø Ø Ø 79 0 0 0 M M

T U L L Y Ø Ø Ø Ø Ø 24 0 0 0 F S

S T A R K Ø Ø Ø Ø Ø 32 0 0 0 M S

L A N N I S T E R Ø 28 0 0 0 F D

Single record (16 bytes)

Employee (as read by old code)

Name Age G

T Y R E L L Ø Ø Ø Ø 79 0 0 0 M

M T U L L Y Ø Ø Ø Ø Ø 24 0 0 0

F S S T A R K Ø Ø Ø Ø Ø 32 0 0

0 M S L A N N I S T E R Ø 28 0

Single record (expect 15 bytes)

Employee

Name Age G S

T Y R E L L Ø Ø Ø Ø 79 0 0 0 M M

T U L L Y Ø Ø Ø Ø Ø 24 0 0 0 F S

S T A R K Ø Ø Ø Ø Ø 32 0 0 0 M S

L A N N I S T E R Ø 28 0 0 0 F D

Single record (16 bytes)

Adding Employee Marital Status

Single record (16 bytes)

Name: MTULLY
Age: 6,144 years (24 * 256)
Gender: 0 (Not defined)

Name: FSSTARK
Age: 2,097,152 years (32 * 256 * 256)
Gender: 0 (Not defined)

What are main problems of using a
relational file as a database?

Test
yourself

AN ALTERNATIVE APPROACH
That didn’t work too well...

Adding Marital Status

• An alternative approach would be to create a
new file for the new data
– Marital Status, Number of Dependent Children

Employee

Name Age G

T Y R E L L Ø Ø Ø Ø 79 0 0 0 M

T U L L Y Ø Ø Ø Ø Ø 24 0 0 0 F

S T A R K Ø Ø Ø Ø Ø 32 0 0 0 M

L A N N I S T E R Ø 28 0 0 0 F

Status

S D

M 2

S 1

S 0

D 1

Problem with Multiple Files

• Two files to maintain
• Performance penalty accessing multiple files
• Old code has no knowledge of new file

– Not a problem for reading/ simple updates

– Danger of data duplication
• Different programmers may independently create their

own ‘marital status’ file
– Adding/ deleting records is a problem

Major Updates Across Relational Files

• Tyrell has no further involvement with the company

• His record is deleted using the original application
– For that read: old code

• May be ok until we compact the files...

Employee

Name Age G

T Y R E L L Ø Ø Ø Ø 79 0 0 0 M

T U L L Y Ø Ø Ø Ø Ø 24 0 0 0 F

S T A R K Ø Ø Ø Ø Ø 32 0 0 0 M

L A N N I S T E R Ø 28 0 0 0 F

Status

S D

M 2

S 1

S 0

D 1

...there’ll be trouble!

• Tully now finds herself married with an extra child
• Stark is still single but discovers he has a child
• Lannister goes from being divorced with one child to

single with no children
...and we believe someone is divorced with one child

Employee

Name Age G

T U L L Y Ø Ø Ø Ø Ø 24 0 0 0 F

S T A R K Ø Ø Ø Ø Ø 32 0 0 0 M

L A N N I S T E R Ø 28 0 0 0 F

Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø 0 0 0 0 Ø

Status

S D

M 2

S 1

S 0

D 1

So what are main problems with
multiple files then?

Test
yourself

Data Base Management System
(DBMS)

instead of a

File System

Enter the Database

• We need to abstract

– Data structure
– Data values
– Data access

from the application software

Database Management System
Application Program

Application Program
Application Program

Application Program

Queries

Code to Process Queries

Code to Handle Data Access

Data Definition
Meta Data

Data

Logical Interface

Database

Database Management
System (DBMS)

Data Access
Software

Physical Data
on Backing Store

Results

Data Independence
• With DBMS, we have two views of data

– Logical view, as presented to applications
– Physical layout on backing store, as manipulated by the DBMS

• If someone wishes to add new information to a data set,
this can be added to the physical layout with no ill effects to
existing applications

(as long as the logical view remains consistent)

• The logical level has to be able to access the new information
without upsetting existing applications
– This can be done by allowing applications to define the subset of the

logical view they wish to see

Another question to think about...

• In what we’ve sketched out so far,
using simple relational files, we can access
information about an employee if we know
their payroll number

• What happens if we don’t?

• What happens if we want to find information
about Targaryen?

Test
yourself

name age gender

Tyrell 26 M

Tully 32 F

Stark 43 M

Lannister 54 F

Baratheon 23 M

Targaryen 19 M

If this is a file system set-up, we only
really have “brute force” option:
• Start with first record,

check for “Targaryen”, if not...
• Get second record,

check for “Targaryen”, if not...
• Get third record ...

There are much smarter ways
of storing/ organising these records
So we can access them much faster.
We will study these methods in the
“Physical Models” part of this course.

Imagine having hundreds of
thousands of records…

How long might it take?

Some organisations have gigabytes
of data… 1,073,741,824 bytes,
equal to 10243, or 2^30 bytes
...a thousand million bytes

Data Independence
• The “subtle” point of Data Independence is that we can

organise and reorganise both…

the contents and the structure of the data

– As long as the logical view presented to the application
programmer and end-user remains consistent

• This is one of our arguments as to why we should use
databases instead of files:
1. Data independence
2. “Clever” access methods/physical-models that speed up

access times even over very large amounts of data

Data Abstraction
• Database systems provide data independence

through data abstraction.
• Data abstraction:

– is a conceptual representation of the data
– does not include any details of how data is stored
– uses logical concepts such as objects, their properties and

inter-relationships
– hides storage and implementation details of no interest to

most database users
– offers application software a consistent (logical) interface

• Data Access Software in the DBMS uses the ‘most efficient’ access
mechanisms to manipulate the physical data

Data Abstraction 2
• Data abstraction in database systems presents a

logical view of data to applications. The physical
layout on the store is manipulated by the DBMS
– If someone wishes to add new information,

this can be added to the physical layout with no ill effects
to existing applications

(as long as the logical view remains consistent) ¹

• Database systems are self-describing
– Unlike traditional file processing,

data definition is not part of the application program

– The data definitions, storage structure of data items, and
constraints are stored in the system catalogue

¹ Note this relates back to Data Independence

Data Abstraction
• In traditional file processing users define and implement the files

needed for each specific application
– The examination office application keeps a file on

students and their grades

– The cashier’s office application keeps a file on
students, their fees and payments

• Both offices are interested in data about (the same) students

• Maintain separate files (and programs to manipulate them)
as each office requires data not available from the other user’s files
results in:
– Wasted storage space
– Redundant effort to keep common data consistent

• We have multiple copies of the same information
– And the same update consistency problem as before

ExamOfficeRecord {

int student_id;
String student_name;
int age;
String location;

int grades[10];

}

AccOfficeRecord {

int student_id;
String student_name;
int age;
String location;

float fees[10];
float paid[10];

}

Multi-Office Example

Student Record
student_id

student_name
age

location
fees
paid

grades

ExamOffice View
student_id

student_name
age

location
grades

AccOffice View
student_id

student_name
age

location
fees
paid

Introducing Views
• Each view contains

– only what each
application wants to
see; and

– only what it needs to
see, keeping rest hidden
(security/ privacy)

• Views may be virtual
i.e. not actually stored
– No wasted space

– No redundant effort
maintaining common
data

• More details on views
later in the course...

Multiple Concurrent Access
• In traditional file processing, support for multiple

users accessing the same data needs to be built into
the application

• A DBMS offers concurrency control mechanisms:
– To ensure that several users trying to update the same

data do so in a controlled fashion so that the results of the
updates are correct (e.g. several reservation clerks trying
to reserve the same seat)

• Systems requiring concurrent transactions are
known as on-line transaction processing (OLTP)
systems (e.g. Bank’s ATM)

Other Features of a DBMS
• Restricting unauthorised access (security)
• Multiple user interfaces

– Query languages
– Application programming interfaces (APIs)
– GUIs
– Natural language interfaces
– WWW access

• Representing complex relationships among data
• Enforcing integrity constraints

– e.g. a uniqueness constraint for course codes or student registration
numbers

• Backup and recovery

Main advantages of DBMS when
compared to using files?

Test
yourself

Terminology
• Entity

– a specific object, real or abstract, about which we need to store
attributes and relationships:

• For example, a person, car, company, etc.

• Attributes
– Properties describing an entity

• For example, a student entity may be described by
name, age, registration number, major, etc.

• Relationships
– Associations among entities, for example, ...

• Person X - is married to - person Y
• Person P - works for - company C

etc.

Record

• Most common data aggregation mechanism

• A collection of related data values or items
– Usually describes entities and their attributes
– a record type is a collection of field names and their

corresponding data types
For example, record Person:
string name, integer age, string NI_Number

– a person record – an instance of person – will be:
(“Amy Smith”, 42, “AA665544X”)

Schema
• A database will hold many different kinds of records, some of

which will be related in some way. Most DBMSs support the
definition of a schema, which allows a user to:
– declare the types of records required (e.g. Person, Company, etc.)

– declare the types of relationships among records
(e.g. person works for a company, company employs a person, etc.)

• A schema is a “roadmap” for the data eventually stored
(sometimes referred to as meta-data: information about data;
although this terminology is not so common now)

• We will examine the ANSI-SPARC Three Layer Schema
Architecture later in this course

Will we try this out?

• Yes of course!
• Later in the labs (starting from week 13), you’ll get the

chance to:
• Design a database schema and declare the type of

records (i.e. students or employees)
• Declare the relationship between records
• Insert data into records (e.g. 1234, Salma, 24,

computer science)
• This will help you understand the terminologies and

put into practice the theory you learn in the lecture.

Overhead costs of a DBMS

• High initial investment in
– Hardware, Software, Training

• General approach for defining and processing data

• Overhead for providing
– Security, Concurrency control,
– Recovery and Integrity functions

When not to use a DBMS?

• May be more desirable to use traditional files
if :
– The database and applications are simple,

well-defined and not expected to change

– There are strict real-time requirements for some
programs that may not be met because of DBMS
overheads

– Multiple-user access to data is not required

So, what is a Database?
• Represents some aspect of real- or mini- world

...also called the Universe of Discourse

– Changes to mini-world are reflected in database
• For example: a university database,

an airline reservation database

• Logically coherent collection of data with
some inherent meaning
– No need for storing courses taken by a student in an

airline reservation system

What is a Database Management
System (DBMS)?

A DBMS is a collection of programs facilitating:
– Definition of a database

• Specifying data types, structures and constraints for the data
to be stored in the database

– Construction of a database
• Storing data on storage medium controlled by the DBMS

– Manipulation of a database
• Querying database to retrieve specific data,

updating database to reflect changes in the mini-world,
and generating reports from the data

Which of the following is “a specific object, real or
abstract, about which we need to store attributes and
relationships”?

A. Schema
B. Record
C. Entity
D. Attribute

Actors in a database system
environment (1)

Database
System

Database
Administrator

Database
Designers

Software
Engineers

End
Users

Actors in a database system
environment (2)

• Database Administrator
– Authorises access to the database
– Coordinates and monitors its use
– Acquires software and hardware resources as required

• Database Designers
– Identify the data to be stored in the database
– Choose appropriate structures and constraints to represent and store this data

• Software Engineers
– Identify end user requirements (e.g. standard types of queries and updates –

also called canned transactions) pre packaged canned data which is consistent
and easy in understanding.

– Implement, test, debug, document and maintain

Actors in a database system
environment (3): End Users

• Casual end users
– Occasionally access database but may need different information each time
– Use a sophisticated database query language

• Naive or parametric end users
– Make up a sizable portion of database end users
– Use canned transactions
– e.g. bank tellers, airline/ hotel reservation systems

• Sophisticated end users
– Implement their own applications
– e.g. engineers, scientists, business analysts

• Stand-alone end users
– Maintain personal databases using off-the-shelf systems e.g. Microsoft Money (a personal

finance management software)

You use Amazon to search for new
office chair. What does that make you?
A. DB Admin
B. DB Designer
C. Casual end user
D. Sophisticated end user
E. Parametric end user
F. Stand-alone end user

	Why Databases?
	Why study database?
	Where would a database be useful? �����Example: hotels
	What do I need to know?
	THE Employee Record System�
	Simple Employee Record System
	Simple Employee Record System
	Simple Employee Record System
	Simple Employee Record System
	Using the Relational File
	Slide Number 13
	Accessing the Relational File
	Accessing the Relational File
	Accessing the Relational File
	Accessing the Relational File
	Slide Number 18
	Adding Employee Marital Status
	Adding Employee Marital Status
	Adding Employee Marital Status
	Adding Employee Marital Status
	What are main problems of using a relational file as a database?
	An Alternative Approach
	Adding Marital Status
	Problem with Multiple Files
	Major Updates Across Relational Files
	...there’ll be trouble!
	So what are main problems with multiple files then?
	Data Base Management System (DBMS)��instead of a ��File System�
	Enter the Database
	Database Management System
	Data Independence
	Another question to think about...
	Slide Number 35
	Data Independence
	Data Abstraction
	Data Abstraction 2
	Data Abstraction
	Multi-Office Example
	Introducing Views
	Multiple Concurrent Access
	Other Features of a DBMS
	Main advantages of DBMS when compared to using files?
	Terminology
	Record
	Schema
	Will we try this out?
	Overhead costs of a DBMS
	When not to use a DBMS?
	So, what is a Database?
	What is a Database Management System (DBMS)?
	Which of the following is “a specific object, real or abstract, about which we need to store attributes and relationships”?
	Actors in a database system environment (1)
	Actors in a database system environment (2)
	Actors in a database system environment (3):	End Users
	You use Amazon to search for new office chair. What does that make you?

